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ABSTRACT 

The Euler equations of fluid dynamics are an example of a very special class of 

nonlinear,  hyperbolic systems of conservation laws, in particular those satisb/- 

ing conditions of reflection and Galilean invariance. These invar/ance proper- 

ties are directly responsible for several of the  at t ract ive s tructural  fea tur , -  of 

this  system. 

I. I n t r o d u c t i o n  

The Euler equations of compressible fluid dynamics are well-known and espe- 
cially important examples of nonlinear hyperbolic systems of consenra~ion laws. 

Several features of these systems, not expected in general - the existence of 

entropy functions, global Riemann invariants, the linearly degenerate "middle 
field" , for example - greatly facilitate the analysis of the local structure of weak 
solutions of these systems. 

These features are not simply fortunate accidents; we shall see here that they 

arise directly from the GalLlean and reflection invariance properties of these sys- 

tems, and hold also for other systems with these properties. For the Euler 
equations, these invariance principles are expected on physical grounds; how- 

ever, in the context of nonlinear hyperbolic systems of conservation laws, they 

are quite special. Indeed, for systems of dimension three or greater in one space 

variable, we shall see here that there are essentially only six such systems, two 

of which correspond to variations of the Euler equations. These systems can be 

extended to several space dimensions, but not all of the systems obtained permit 
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rotational invariance in doing so. Thus the Euler equations are, in fact, very 

special examples of nonlinear hyperbolic systems. 

For obvious reasons, our discussion is centered on the case of a system of 

dimension three in only one space variable, and proceeds as follows: in the 

following section, we introduce notation and prove a representation theorem. 

Hyperbolicity, the linearly degenerate second field, and the existence of entropy 

functions are discussed in section 3. In section 4, we discuss the shock curves 

in the large, the entropy condition, the solution of Riemann problems and the 

stability of discontinuities under perturbation of the incoming characteristics. 

For additional background material, we refer the reader to ]10] as a general 

reference and [9] for a thorough discussion of the solution of Riemann problems 

for the Euler equations. 

H.  R e p r e s e n t a t i o n  T h e o r e m  

We consider systems of the form 

(2.1) u~ + / =  = 0 

where z,t  are the scalar independent variables, w(z,t) , f(w) E Rn, f a given 

smooth vector valued function of to, with the eigenvalues of fw real. In place of 

the components of to, it is convenient to introduce new dependent variables v -- 

(u, z) T, u(z, t) E R, z(z, t) E Hn-1; here u is interpreted as the fluid velocity and 

z the ~internal = variables, for example the mass and internal energy densities. 

We assume to a smooth function of v, at least locally invertible, i.e. the matrix 

tou nonsingular. 

Our systems are invariant under reflection, i.e. under the transformation 

(2.2) X --+ - - Z ,  t - -4  t ,  U --+ - - U ,  Z ---+ Z 

and under a Galilean transformation, of the form 

(2.3) Z " *  Z - -  f i r s t  - -*  t , U  ~ U - -  r h z  " *  z 

for any constant 7. For a given system, this will not determine z uniquely - 

an explicit choice is made below. Also we mean invariant here in a strong 

sense, that  under a transformation (2.2) or (2.3), each equation in (2.1) is a 

linear combination of the equations composing (2.1), with coefficients that  may 

depend on ~ in the case of (2.3) but do not depend on the dependent variables. 
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We rewrite (2.1) in the form 

(2.4) to( . ,z) ,  + (.to(u, z) + q(u, ~)).  = 0 

thus determining the vector function q. 

In view of (2.2), (2.4) is equivalent to a system of dimension 2n, 

(to(u, ~) ± to ( - . ,  ~)), + (u(to(~, ~) ± to ( - . ,  z)) + (q(., ~) ~ q(-~ ,  ~))) .  = 0, 

in which each term is even or odd under the transformation (2.2). Taking a 

constant, nontrivial linear combination of the equations in (2.4) if necessary, it 

is therefore no loss of generality to assume that  each equation in (2.4) is either 

even (unchanged) or odd (all terms change sign) under the transformation (2.2), 

and therefore that  the system (2.4) assumes the form 

(2.5a) to+(~,z),  + ( ~ t o + ( . , z ) +  q_(~,z))= = 0, 

(2.5b) to_ ( . ,  ~), + ( . to_( . ,  z) + q+(~, z))= = 0, 

where ± subscripts denote even or odd terms under the transformation (2.2). 

Here t0+, q_ are vectors of dimension n - m and to_, q+ vectors of dimension m, 

for some integer m. 

The transformation (2.3) puts the system (2.4) into the form 

(2.6) to(- - 7, z) t  + ( u t o ( .  - ~, ~) + qh ,  - ~, ~))~ = o 

where at is now with z - ~t fixed. For this to be the same system as (2.4), there 

must be a nonsingular n x n matrix i¢ = {r~i(t/)} and n-vectors ~.(~/), ~(r]) such 

that  

(2.7) to(u -- 17, z) ---- ~(tl)to(u, z) -i- K(r/), 

(2.8) q ( u  -- TI, z) =- ~ ( ~ ) q ( u ,  z )  -- u~(17) -i- ~,(tI). 

As to and q are smooth functions of u, it follows that  ~, ~, ~ are smooth in 
and satisfy ~; = identity, ~ = ~ = 0 at ~ = 0. 

Passing to the limit as ~ ---, 0, we obtain the existence of a constant (likely 

singular) matrix/~ = (/~,y} and constant vectors ~, ~ such that  

(2.9) tou(u,z) = ~to(u,z) ÷/~, 

(2.10) qt,(u,z) = ~q(u , z )  - ~u  "t" ~. 

Clearly ~ -  = 0 unless toi and toy are of opposite parity with respect to the 

transformation (2.2). For to~ even, ~i vanishes, and for toi odd (and thus q~ even, 

from (2.5)), ~, vanishes. 

Next we show 



84 M. SEVER Izr. J .  Math .  

LEMMA 2.1 : The dimension of to_ and of q+ ~ 1, independent of n. 

Proof: Let m be the dimension of w_ and of q+, and thus n - m that  of w+ and 

of q_. We require w(u, z) to be locally invertible. At a point where u = 0, w_ 

vanishes and we shall have the n - m components of w+ determined by the n - 1 

components of z, plus u = 0. This cannot be locally invertible if m exceeds one. 

And if m = 0, i.e. all the equations are even, at least one of the components 

wi must depend nontrivially on u; otherwise u cannot be determined from w. 

Then atoi/au does not vanish identically, but  ~i = 0 as wi is even, so there 

exists some j such that  flO" ~ O. But then toy is odd, so there must be an odd 

equation. [] 

Some choice for the n - 1-vector function z is implicit in (2.2), (2.3), but  this 

does not determine z uniquely. Given some choice for z such that  (2.2), (2.3) 

are satisfied, set ~ = w+(0,z) ,  which by Lemma 2.1 is a vector function of z, 

of dimension n -  1. And as to_z(0,z) vanishes, for w,(O,z) to be nonsingular, 

the matr ix  ~ffi must be nonsingular. Thus variations of to, q as u varies with z 

fixed are equivalent to variations as u varies, ~ fixed, and (2.2), (2.3) hold as well 

with z replaced by ~. Regarding (2.9) as an initial value problem for to, with u 

as the independent variable, recalling w_ (0, z) = 0, it is clear that  u, ~ uniquely 

determine w(u, z(~)) and that  u, w(u, z(~)) uniquely determine to(0, z(~)). Thus 

= to+(O,z) satisfies ~ = to+(0, z(~)). The global invertibility of the transfor- 

mation u, £, --* to(u, z(~)) thus depends only on obtaining u uniquely in the large, 

given to(u, z(~)). 

Therefore hereafter we identify 

(2.11) z = w+ (0, z) 

without loss of generality in (2.2), (2.3). 

With these preliminaries, we have the following representation theorem. 

THEOREM 2 .2 :  Let (2.1) be a system of dimension 3, invariant under the 

transformation (2.2) and (2.3). Then for some equation of s t ~ e  P = P(p, e) and 

some value of a scalar constant a, it is one of the following six systems, possibly 

alter a scaling in u, and the appropriate choice of p, ¢, possibly involving scaling 

and the absorption of acldit~e constants. 

pt = (pu + au)= = 0 

(2.12a) (pu)¢ + (pu 2 + P -t- ~ u  )= = 0 

e, + (eu)= = 0 
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(2.12b) 

.~ + (pu + ~,u). = o 

2 (p,,)~ + (p,,~ + P + ~.,, ) ,  = o 

1 2 1 c~ s (~ ÷ ~p,, )~ ÷ (,,(~ + p,,~ ÷ e) + ~,,  ) .  = o 

(2.12c) 

+ (p, , ) .  = o 

(~ sinh ,,), + (,,~ sinh ,, + P co.h ,,),, = 0 

(~ co~h ,,), + (,,~ co,h ,, + P sigh , , ) .  = 0 

(2.12d) 

+ ( ~ , ) .  = o 

(~ sin ~,)~ + (,,e s i n , , -  Pco~ , , ) .  = O 

(~ co~,,), + (,,~ co~,, + P s i ~ , , ) .  = 0 

(2.12e) 

+ ( p . ) .  = o 
u 2 

~ + ( y + P ) . = 0  

et + ( ~ ) =  = O 

p, + (pu) .  = o 
U2 

(2.12f) u~ ÷ (-~- + e ) ,  = 0 

u 3 
(e + 1u2)e2 + ("3- + u(e + P ) ) =  = 0 

P, oor: We consider the constants ~, ~, ~ ~- (2.9), (210).  Now ~ _ ~  c ~ n o t  v . i s h  
identica/]y; if w_ u is not  s imply  a cons tant ,  by taking a l inear combina t ion  of 

the  w+ as necessary,  we can make  w - u  --- wi for  some i. As each c o m p o n e n t  of  

w+u is e i ther  zero or a mul t ip le  of  w_,  e i ther  w~,~ = 0 or  wi,u = v w _  for some 

nonzero  v. Let  wy be the  o the r  componen t  of  w+.  

If  u~i,u = 0, then  ei ther  u~y,u = 0, leading to  the  sy s t em (2.12a), or  else, poss ib ly  

af ter  a scaling, toy, u = w_,  giving (2.12b). 

If uJi,u = v w _ , ~  ~ 0, then  possibly  af ter  a scaling in u, Ivl = 1; ta.lcing a llnea.r 

combina t ion  of wi and  wy if necessary,  we can have tuy, u = 0. The  value I / =  + 1  

gives (2 .12c);  ~ = - 1  gives (2.12d). 

And  if w - u  is a cons tan t ,  the  cons tan t  can be t aken  as +1 .  By  tak ing  l inear 

combina t ions  of  the  componen t s  of  w+,  again denoted  by  wi, wi,  we can have 

u3i, u --- 0 and  ei ther  wy, u :-  0 or  else wy, u :-  w_.  These  are the  two sys tems  

(2.12e) and (2.12f). []  
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In each case (2.9), (2.10) are used to obtain the appropriate expression for q, 
with P the ~constant of integration s in the odd equation. The resulting system 

is obtained from (2.4). 
Entirely similar arguments apply to systems of higher dimension, and show 

that one obtains the same systems (2.12) with additional acontinuity equations ~ , 

of the form p~,¢ + (u~  + c~u)z = 0,i = 1, . . . .  In this case P depends in general 

also on the p~. 

Extensions to higher space dimensions are also possible. These are well-known 

for the Euler equations. For example, an extension of (2.12c) to two space 

dimensions, satisfying the obvious extension of (2.2) and (2.3), in given by 

p, + (pUl)~ + (pu~),  = o 

(el sinh Ul), + (u,,1 sinh u, + P co~h u , ) .  + (u2~, sinh u , ) ,  = 0 

(2.13) (el cosh ux), + (uxex cosh U 1 -~- P sinh ux)= + (U2fl cosh Ul)y = 0 

(e, sinh ~ ) ,  + (u~,,  sinh u , ) .  + (u~,,  sinh u,  + P c ~ h  u2), = 0 

(¢2 cosh u2) t -]- (uxe 2 cosh u2)ffi + (u2e2 cosh u2 + P sinh u2)u -- 0 

in the five unknowns ux, u~z, p, el, e2, with P = P(p, ex,ea). 
The systems (2.12a), (2.12b) can be interpreted, obviously, as modest ex- 

tensions of the Euler equations, with e interpreted as the entropy density for 

isentropic flow, or as a perpendicular momentum component rather than the 
internal energy density in (2.12a). The systems (2.12e), (2.12f) may be viewed 

as extensions of Burgers equation. (2.12c) appears attractive from the point of 

view of local structure of weak solutions, but we are unaware of any applications 
or appearances of this system. As against that, there is trouble with (2.12d); 
the components of to do not uniquely determine u, and this will be reflected in 
trouble with the entropy functions and with the shock curves. 

One notes that the equation of fluid dynamics in Lagrangian coordinates does 

not appear in (2.12). Because of the different interpretation of a/at in La- 
grangian coordinates, the Lagrangian system does not satisfy (2.3). Similarly, 

the Lundquist equations for ideal magneto fluid dynamics (in one space variable) 

satisfy (2.3), but satisfy (2.2) only in the special case that the (constant) longitu- 

dinal component of the magnetic field is equal to sero. In this case the Lundquist 

system reduces to the Euler system with additional continuity equations and dif- 

ferent expressions for pressure and energy density. 

rII.  Charac te r i s t i c  Speeds  and  E n t r o p y  Funct ions  

Hereafter we assume n >_ 3 for definiteness and simplicity. 
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It is convenient to discuss the characteristic speeds As and corresponding eigen- 

vectors ri, i = 1 , . . . ,  n, in the v-coordinates, v = (u,z) T, i.e. the solutions of 

(3.1) (/, - A,~),, = o, i = i,...,,,. 

The representation (2.5) puts (3.1) into a more useful block form 

I(:'_ ) ( )] q-* - ( A s - u )  to+,, w+, r~=O, i = l , . . . , n .  (3.2) -t- q+u q+z w - ,  w - ,  

From (2.2) and (2.3), it can be inferred that  As -- u + ci, where the ci are 

independent of u and satisfy ci = - c , , + l - i ,  and that  the ri are independent of 

u. Therefore we can determine the e~, r~ with u ---- 0 and the vanishing of all the 

odd terms in (3.2). 

One solution is A2 = u, i.e. c2 = 0, with corresponding eigenvector 

(3.3) r 2 • (0, T) T, 'r(z) E R n -1  

satisfying 

(3.4) q+z (0, z ) .  ~'(z) = 0; 

q+ (0, z) is a scalar function independent of u, equal to P in each of the systems 

(2.12). Without loss of generality, we will continue this identification hereafter. 

Therefore there are n - 2 independent nontrivial choices for r, and A2 is of 

multiplicity (at least) n -  2. Since uu = (1, 0) T in these coordinates, we have 
from (3.3) 

(3.5) r2 • A2,~ = 0, 

i.e. all of the fields corresponding to A2 are linearly degenerate. 

Thus u = A2 is clearly one Riemann invariant for each of these fields, and 

from (3.4), q+ = P is another 2-Riemann invariant. Indeed, from (3.2) and 

(3.3), every component of the vector q is a 2-Riemann invariant, but these are 
all functions of u and P.  

Making an ansats for An, A1 of the form 

(1) 
A = u + c ,  r =  +f 

in (3.2) and aga;- setting u = O, we readily 6rid 

(3.7) ,,+ (o, ~) + q_~(o, ~) - ~(~) = o 
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and 

(3.8) ~( , ) .  q+,(o, , )  - ¢=_=(o, z) = o 

so that  

(3.9) 

c2= q + , ( o , z ) ( = + ( o , z ) + q _ = ( o , , ) )  
w_=(o,=) 

= P z . ( z + q _ = ( O , z ) ) / w _ = ( O , z )  

using (2.11), and 

(3.10) ~(z)=(,+q_=(o,z))/c(,). 

Fo r  t he  sys tems (2.12), we set z = (p ,¢ )T ;  q_=(0 ,  z )  vanishes for (2.12a) and 

(2.12e), and is equal to (0,P)  T otherwise; and t0_=(0, z) is equal to p for (2.12a), 

(2.12b), e for (2.12c), (2.12d), and I for (2.12e), (2.12f). 

Hyperbollcity thus follows for the right side of (3.9) nonnegative, but  strict 

hyperbolicity can hold only for n _ 3, with the right side of (3.9) positive. 
Furthermore, strict hyperbolicity cannot be maintained in a neighborhood of a 

point where to_u(0, z) = 0. For if Icl remains bounded in such s neighborhood, 

f ( z ) .  P= ~ 0 as ]t0_,,(0, z)] --* 0, so f approaches a linear combination of the 
vectors ~ and the eigenvectors rl ,  r2, rs cease to be linearly independent. 

For )t = ~,~ = u + c, c > 0, r = rn = (1, f)T,  any value of u, the even and odd 
parts of (3.2) have to be individually satisfied, so in particular 

(3.11) q+= • f = c w _ =  

and  

(3.12) q_= • f = cw+= ,  

SO 

(3.13) qz " f = cw=.  

We use this to prove 
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LEMMA 3.1:  Assume c > 0; then the (r~- 1) x ( ,~-  1) matr /x  z , q ,  vanishes 
identically. 

Proof: The components of q are 2-Riemann invaria~ts, so q,r  = 0 for any r 

satisfying (3.4). Furthermore, using (3.13) 

Z w q z ~  = C Z , . t o  u 

= CZ u 

= 0 ;  

as f and the r span R "-1 ,  for c > 0 and thus the eigenvectors n necessarily 

independent, our result follows. [] 

This lemma is used in the determination of entropy functions for the systems 

(2.4). For simplicity, we shall restrict attention to the c a s e ,  = 3 in the discussion 

of entropy functions. An entropy function/flux is a pair of scalar functions 

(of to, say) U, F,  such that  continuous solutions of (2.4) satisfy an additional 

conservation law (cf. [21) 

(3.14) u(to), + F(to). = o. 

Trivial examples of (3.14) axe U constant and U = a • to for some constant 

vector a. More interesting examples correspond to U strictly convex in to, or at 

least U ~  nonsingulax. 

Not surprisingly, entropy functions for systems (2.4), invmiant under the trans- 

formation (2.2), (2.3), necessarily satisfy some special conditions. 

LEMMA 3.2 : Let U, F be an entropy function/Bux pair/or a system (2.1) or 
(2.4), invariant under (2.2) and (2.3). Then 

(i) U, F can be taken of opposite parity with respect to (2.2). 

(ii) Q :_ F - uU is a 2-Riemann invariant, indeed a k- Riemann invariant for 
a l /k  s u ~  that  ~ = u (for ,~ > 3). 

(ih') Uu = U, uwu is also an entropy function for (2.4), with corresponding tTux 

Proof: The necessary and sufficient condition for U, F to be an entropy func- 

tion/flux pair is that  

(3.15) U , f ,  = Fw; 
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assuming (3.15) holds, (3.14) is obtained by taking the scalar product of (2.1) 

with U , .  Therefore (3.14) will also be invariant under (2.2) and (2.3). In par- 

ticular, the even and odd parts of (3.14) under (2.2) will have to be separately 

satisfied, so the first statement holds. For any constant ~/, making the transfor- 

mation (2.3) in (3.14), we find 

(3.16) U(w(u - ~/, z)), + T/(U(to(u - ~,z)). + F(w{u - ~/,z))ffi = 0; 

taking the limit as ~ --, 0, we obtain the third statement of the lemma. The 

second statement is simply a statement that  the *entropy drop ~ -s[U] + [F] 

vanishes for a linearly degenerate field, and here we have s = Ak = u. Here 
[ ] denotes the jump in the enclosed quantity at a discontinuity satisfying the 

Rankine-Hugoniot conditions, as usual. [] 

Lemma 3.2 facilitates the search for entropy functions. An obvious possibility, 

already well-known in the context of the Euler equations, is to take U = U(z), 
independent of u, and F = uU. In particular, for U, F of this special form the 

statements (ii) and (iii) of Lemma 3.2 are trivially satisfied. 

For the systems (2.12a), (2.12e), there is an additional entropy function cor- 

responding to an energy-these are discussed below. Otherwise, partial results 

suggest the absence of other entropy functions. For example, for the Euler sys- 
tem (2.12b) it is known that in general no other nontrivial entropy functions 

exist [U]. 
We thus seek entropy functions of the special form 

(3.17) U(z) = (p + ~)a(z), F(u,z) -- uU(z) -- u(p + ~)a(z) 

where p is the first component of to and of z, always satisfying the ~continuity 

equation ~, as in each of the examples (2.12). By convention, ,~ = 0 for the 

systems (2.12) other than (2.12a), (2.12b). 

Then we compare 

(3.18) F, = uU, z, + Uu. 

with Fx as determined from the requirement that  U, F are an entropy func- 

tion/flux pair, i.e. (3.15), leading to 

F= = U./= 

= u. (,,to + q), 

= Uzzt, (tour + uto. + q,,u, + qzz,) 

= U,,z,,,uto. + U,,z,,,(to + q,,)u,, + U,,z,,,q,,z:, 

(3.19) ---- uU= + D'zz,,(w + q,,)u= 
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using Lemma 3.1 in the last step, tacitly assuming c > O. 

We can simplify (3.19) by setting Ai --- u + c, ri = (1, f ) r  in (3.2), obtaining 

(3.20) w + qu + q.f - cwu - cwz~ = O. 

Multiplying (3.20) by z,~ and using Lemma 3.1 again, we find 

• (w + q . )  = 

(3.21) = z+ q_~,(O,z) 

using (3.10), so zw(w+q,,) is in fact independent of u. Comparing (3.18), (3.19), 
(3.21), we have 

(3.22) U = Us(z "I- q_.(O,z));  

using (3.17) and (3.10) again, we have 

LEMMA 3.3:  Assume c 2 > 0 (as determined by (3.9)); then a necessary and 

sut~cient condition that U, F, of  the form (3.17), be an entropy function/i[ux 

pair is that  

(3.23) f . ~ ,  = O, 

i.e. the specii lc entropy ~ is both a 1 - and am n-Pdemann invaxiant. 

Let e be the second component of z, such that  w_u(O,z) is either p,e, or 1. 

We restrict attention to z satisfying 

(3.24) p>O, p+~>O, e>O, 

and assume that c 2 > 0 as determined from (3.9). We wish to establish the 

global solvability of (3.23). In the region determined by (3.24), there are no 

critical points of the system 

(3.25) z' = f(z); 

both p and P are Lyapunov functions for this system, so there are no bounded 
semiorbits. 

For the system (2.12a), (2.12e), i.e. those systems not containing an "energy 

equat ion ' ,  f(z) = (z-i- (a, 0, 0 , . . . ) ) /c (z ) ,  so the orbits of (3.25) are just  straight 

lines in the variables p + a , e  and the solvability of (3.23) is obvious. For the other 

systems, the second component of f is proportional to e + P ,  and the question 

of solvability is more interesting. We prove the following lemma= 



92 M. SEVER Isr. J. Math. 

LEMMA 3.4 :  For the system~ (2.12b), (2.12c}, (2.12¢]), (2.12f), assume c(z) > 

0 in a region f] : p -- Po >-- el > O, 0 < s2 <_ e <_ M,  where Po = maximum (0, - ~ )  

and 61, ~2, M are given. Then o k determined uniquely in thls region by (3.28) 

and its values on the line segments p = Po + ~I, (e = s2) N (e + P > 0), and 

(e = n (e + e < O). 

Proof." From (3.25), (3.9) and (3.10) we have in such a region 

(3.26) p' P "[- O~ __> • 1 =-- -->0, 
C C 

(3.27) e' e + P j 
C 

e + P  
(3.28) (e + P) '  = - -  + c t0_ , (0 ,  z) 

C 

e + P  

C 

(prime denoting differentiation along the orbits of (3.25)), so the characteristics 

are entering the region n on each of the prescribed boundary surfaces. If e = 

M, e + P = 0, (3.27), (3.28) shows that  e increases immediately so the orbit 

leaves ~. If e ---- e2, e + P  _< 0, and p > Po +6 1 ,  then along the orbit, in 

the negative direction, p decreases and • + P remains negative (or immediately 

becomes and remains negative) so e increases. Continuing in this direction, using 

(3.26) - (3.28) it follows that  such an orbit will reach either the line p = Po + el ,  

or e = M, with e + P < 0. 

An orbit f r o m a p o i n t p = p 0 + e l ,  e2 < e < M o r a p o i n t p _ > p 0 + e l ,  e =  

M cannot reach e = ¢2, p > Po + 61 with e' = (e + P) /c  positive, nor can it 

reach e = M, p > Po + el ,  with e' negative. So the boundary conditions are 

consistent. 

It is clear from (3.26) - (3.28) that  the orbit backward from any interior point 

in f] will reach one of the boundary segments on which ~ is prescribed. Thus 

(3.23) and the given boundary values uniquely determine ~ throughout  ft. [] 

Next we establish the existence of such entropy functions which are convex in 

z. For simplicity, we write out the proof only for the systems (2.12b), (2.12c), 

(2.12d), (2.12f); the other cases are simpler. 
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LEMMA 3.5:  Under the conditions of Lemma 3.4, for any given K > 0 we 

can prescribe o on the speci6ed boundary segments such that ~e is continuous, 

(3.29) ace _> KIoel, Oe < 0 

uniformly in a neighborhood of the line segments where o is prescribed. 

Proof: Writing (3.23) in the form 

(3.30) (p + a)ap + (e + P)cre = 0 

and taking p, e derivatives we obtain 

(3.31) (p -I- o~)opo + (e + P)ope + op + Pooe = O, 

(3.32) (p + ~)crpe + (e + P)oee + (1 + Pe)Oe = 0, 

(3.33) (p + a)cr~e -I- (e + P)aeee + 2(I + Pe)oee +Peeoe = O, 

so that  along orbits of (3.25), we have from (3.32), (3.33) 

' = - ( 1  + P , )o ,  lc,  (3.34) 

(3.35) O~e = - (2(1  + Pe)oee + Peeoe)lc. 

Clearly we can prescribe ~e,Oee satisfying (3.29) on the segment p = P0 + 

~'1,62 ~ e < M .  

At a p o i n t w h e r e e ÷ P = 0 ,  P + p o ~ 0 ,  c 2 > 0 i n ( 3 . 9 )  requiresPo > 0 s °  

(e+P)p > 0. Thus in each of the boundary segments e = e2 or e + M ,  e + P  < 0 

at most in a s i n g l e i n t e r v a l e  = e2, ez _< p < p-  or e = M, ez _~ p < p+. 

First we consider an interval ez _< p < p+, e = M. Choosing Oe(P+, M) < 0 

arbitrarily, we have from (3.32), for oe, chosen satisfying (3.29), 

(3.36) (p + ~)o~ = -(1 + Pe)oe - (e + P)oee 

>__ - (1  + Pe)o~ - Kle + P I ~  

~_ -- (constant)oe 

since • + P _< 0, so as p decreases from p+ to ez, oe remains negative. Thus 

¢e(ez,M) < 0 is determined; we prescribe Oe,Oee On the segment p = P0 + 

ez, e2 < e < M, satisfying (3.29), thus obtaining oe(ez,e2) < 0. 

Now on the segment ez _< p _< p - ,  e = c2, the values of Oe are determined 

from the boundary values so far obtained and (3.34), since the orbits through 

these points continue backward to the other specified boundary segments. Thus 

oe(p-,e2)  <0 iecont inuous lyobta ined .  F o r p > p _ ,  e = s 2 ,  w e h z v e e + P > 0  

and so o0e _~ - (constant) oe from (3.36). Thus for Ore chosen satisfying (3.29), 

Oe remains negative, as p increases, and the proof is complete. [] 
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As a corollary of Lemmas 3.3, 3.4, 3.5, we have the following: 

T H E O R E M  3 . 6 :  Let no be bounded within some region fl where the condi- 
tions of  Lemma 3.4 hold (c 2 > 0 in particular}. Then there ex/sts an entropy 

function/Bux pair, of the form (3.17), with U uni/orm/y convex in z within no. 

Proof: It suffices to show that Use and UpoUee - U~  can be made positive in rio. 
A straightforward calculation using (3.17), (3.30), (3.31), (3.32) gives 

(3.37) UppUee - U 2 = - [(e + P)Pe + (P + ~)Pp]oeOee 
2 2 - P~ o,  - c2to-u(0, z)oeoe, - P;°e,2 2. 

since Use = (p -i- ~)Oee, it iS clearly sufficient that  Oe < 0 and oee/]oe] be suffi- 

ciently large. As n0 is bounded, the orbits of (3.25) through any point in n0, 

continued in the negative direction, reach the prescribed boundary segments in 

finite time. Therefore using (3.34) and (3.45), choosing K sufficiently large in 
(3.29) (depending, of course, on no), these conditions can be achieved. [] 

Whether such U(z) convex in z is also convex in to, as desired, depends on 

the specific system (2.12). For (2.12b), (2.12c), and (2.12 f), a caiculation shows 
that if U = U(z) is strictly convex in z then it is also strictly convex in to. For 

(2.12d) convexity in to fails. For (2.12a), (2.12e), i.e. the systems with no energy 

equation, z = to+ for all u, so U is independent of to_, and U = U(z) strictly 

convex in z is convex, but  not strictly convex, in to. However, at least for these 

two systems, there are other interesting entropy functions. 
Indeed, in each of the systems (2.12a), (2.12e) we can identify e as an entropy 

function of the form (3.17) for the corresponding system (2.12b) or (2.12f). Thus 

we seek an entropy function for (2.12a) (reap. (2.12e)) in the form of the energy 

for (2.12b)(resp. 2.12f). 

L E M M A  3.7:  Assume that U = U(h ,E) ,F(h ,E)  are an entropyfunction/ffux 

pair for a system (2.4), sstis/ying (2.2), (2.3), rewritten in the form 

(3.38) b~ + b(h, E)s  = 0, 

(s.39) F~ + H(h, E). = o, 

with h, b E R n- ~ and E, H scalar valued. Assume that aU/aE (with h constant) 
do~, ~ot . ~ , h .  T h ~  ~ = ~(h,  U ) , ~ ( h , ~ )  ~, ~. e~t,opy/.~t~o~/~= p~i, fo, 
the system 

(3.40) ~ + b (h ,~ ) .  = 0, 
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(3.41) Ut ÷ F(h, co)= = O, 

where co is the inverse/unction of U at constant h, i.e. 

(3.42) E --- co(h, U(h, E) ). 

Proof: With E identified as c0(h, U), we wish to show that smooth solutions of 
(3.40), (3.41) also satisfy (3.39). Since U, F are an entropy function/flux pair, 
F = F(h, E) satisfies 

(3.43) F= = Uhb= + UEH=, 

and U = U(h, E) satisfies (3.41) 

= uh~  + u E ~  + U~,b~ + UBH~, 

= u ~ ( ~  + ~ )  

using (3.40). As UE is nonzero by assumption, (3.39) holds. [] 

COROLLARY: Let U, F be an entropy function/~ux pair of the form (3.17) for 

the system (2.12b) (resp. (2.12f)), with ~, < 0 in some region fl of z-space 

satisf)'ing (3.24). Let co = co(p,U) be such that U = U(p,e) = U(p, co(p,U)). 

Then co + ½p~2,,(co + ½p~2 + p)+ ~_~3 (r~,p. co + l~,.,(co + p) + ~) is ~. 
entropy f.nction/B.~ p~, for (2.12a) (resp. (212e)), in the s~e region n 

Set U = c o ÷ ~ p u  2 for (2.12a) orco+12u2 for (2.12e). I fue  < 0, ~ee > 0 

and (3.24) holds, then Uw_ w_ > 0. Taking a linear combination U + KU, K a 
sufficiently large positive constant and U uniformly convex in z, as obtained in 
Theorem 3.6, U ÷ K U  will be uniformly convex in to, as desired. Therefore, we 
have, finally 

THEOREM 3.8: For any system (2.12) except (2.12d), suppose that c 2 > 0 
(i.e. thst  the system is strict!y hyperbolic) in s region f] : p0+el _~ p_~ L, e2 _~ 

e <_ M, el, e2, L, M > O. Then there exists an entropy function/Bux pair 
U, F for this system, with U uniform~ convex in w, in the region determined by 

z(w) e n. 
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I V  D i s c o n t i n u i t i e s  a n d  t h e  R i e m a n n  P r o b l e m  

We assume hereafter a system (2.1) of dimension 3 satisfying (2.2), (2.3), and 

such that  to uniquely determines u, i.e. excluding (2.12d). For simplicity we 

assume ~ -- 0 in (2.12a), (2.12b), and consider each system in a region D of 

z-space, given by 

I { p  > 0, e > 0) for (2.12a),(2.12c),(2.12e) 
(4.1) D =  { p > 0 ,  e + p > o }  for(2.12b),  (2.12f) 

identifying the boundary segment {p ~- 0} as the vacuum state. For z E D, we 

assume an equation of state P = P(p, e) such that 

(4.2) c2(z) > 0, P(z),Pa(z),Pe(z ) >_ O, 

with e 2 determined from (3.9). We shall also assume that 

(4.3) P(p,  ¢) --* oo as both p, e --, co. 

Two states vl ---- ( t~1 ,~1 )  a n d  tl 2 = ( t ~ 2 , z 2 )  c~I1 b e  connected by a discontinu- 

ity of speed s = s(vl,  v2) in a weak solution of (2.1) if the Rankine-Hugoniot 

relations are satisfied, written here in the form 

(4.4) 8(101+ - -  to2-1-) = U l t o l - b  - -  U2to2-{- "~- q l - -  - -  q2- - ,  

(4.5) 8( to1--  - -  to2- - )  = U l t o l - -  - -  U2to2--  "~ ql-I- - -  q2-l-, 

using (2.5). 
For zl e D, let r( l) denote the set of points ~ satisfying (4.4), (4.5). In a 

neighborhood of v~, from the strict hyperbolicity condition (4.2), we have [1] 

(4.6) 
n + 

r( l) = (v l )  u 

where e a ~  r ~  (vl) is a smooth one-parameter manifold with vl as one endpoint 

such that sOy, v1) "-~ )~k(vl) and ( v -   l)/Iv-vii Secomes parcel to as 

v - ,  vl within I '~  (v l ) .  
To discuss the set r (v l )  in the large, we first appeal to (2.3), from which it 

follows that (4.4), (4.5) is invariant if the same constant is added to ul ,  t~, s. 

Without loss of generality we set us = 0; the odd terms at us vanish, w~+ is 

z2, q2+ is P2, and obtadn 

(4.7) 8( tot+ - z~) = u l to1+ + q1 - ,  
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(4.8) awl -  --- u i w l -  + ql+ - P2. 

It is also convenient to dHferentiate (4.4), (4.5), along a curve of states con- 

nected to vl, for vl fixed. Denoting such derivatives by dots, and again subse- 

quently putting u2 = O, we find 

(4.9) (z2 + q_,(O, ~))~,2 - s~ = ~(z~. - w~+), 

(4 10) P,(z2)~2 - ~w_~(o, z2)~ = -~w1_. 

Prom (3.2)-(3.4), one set of solutions of (4.4), (4.5) is obtained as the points 

on the orbits through vl of the system 

(4.11) ~ = +,'(z), ~(z).P,(z) = O, l,'(z)l = 1; ~ = , i - -  O. 

These are the contact discontinuities, corresponding to r~(v~) in (4.6), as 

s = ul = A2(vl). The pressure P is constant on these orbits, but the specific 

entropy u, satisfying (3.23) with up > 0, ue < 0 in D, is a Lyapunov function on 

these orbits, given the strict hyperbolicity (4.2), and noting that w_t,{0, z) > 0 

for all z E D. Thus these orbits extend to infinity or to the boundary of D, and 

r+(vl) may be distinguished from r~- (vl) by u > U(Zl) in the former case. 

We characterize these solutions further in the following three lemmas. 

LEMMA 4.1: Ifeitherul or s/szero/u asolutiono£(4.7}, (4.8}, or i[ ul =s, 

~.hen Vl, v2 axe connected by a contact discontinuity, i.e. one o£ ~he two semiorbits 

of (4.11} beginning at tlI contains t~. 

Proo[: If s --- 0, then ul ---- 0 follows from (4.7), using (2.12) and (4.1). If ul -- ,, 

then Ul = 0 follows from (4.7) using the first equation of each of the systems 

(2.12). Putting ul = 0 in (4.8), we find 

(4.12) P1 ---- ]>2; 

without loss of generality, using (4.2) and (4.12), we take 

(4.13) Pl <:- P2, ¢1 ~> e2. 

In the p, e plane, the semiorbit of (4.11) from zl with p nondecreasing and e 

nonincreasing, and the semiorbit of (4.11) from z~ with p nonincreasing and • 

nondecreasing, will each intersect the semiorbit of 

(4.14) ~ = f(z) 

from the point (pl,e2), p,e both increasing, where f is obtained from (3.10). 

Again from strict hyperbolicity, P is a Lyapunov function on the orbits (4.14), 

so from (4.12) these two intersections coincide, and the above serniorbit of (4.11) 

from Vl reaches t~. [] 
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LEMMA 4.2: For vl fixed, each of the two sets rzf ( v l )  continuerr uniquely as 
a 1-manifold to infinity or to the boundary aD.  

Proofi Consider the system (4.9), (4.10) in the form 

A is the same 3 x 3 matrix appearing in (3.2), with u = 0 and 3 replacing 
Xi. Thus if s is not one of the characteristic speeds at y, A is nonsingular and 
(4.15) determines u2, i2, i up to an unimportant normalization. For v E I',f ( v l ) ,  

having put u2 = 0 in (4.9), (4.10) implies ul = 0 = s ;A(z2 ,0)  is singular but 
the solution of (4.15) is still determined, up to normalisation, if 

(4.16) (Y-i::') = (Y ' l )  is not in the range of A(q ,O) .  

From (4.9), (4.10) 

so (4.16) fails only if za - zl is parallel to 22 + q-,(O, z2) ,  both components of 
which are positive from (4.1), (4.2). But p l  - pz, el - ep cannot be of the same 
sign, as v2 E r h ( v l )  implies (4.12), giving a contradiction with (4.2). 0 

LEMMA 4 . 3  : There are no solutions of (4.71, (4.81 with zl E D,  pz = 0,  other 
than those corresponding to contact discontinuities. 

Proof: Each of the systems (2.12) includes a continuity equation for p. Thus in 
each case the first equation in (4.7) is 

for pl > 0 ,  pa = 0 we have s = ul  from (4.18) and thus the solution corresponds 
to a contact discontinuity &om Lemma 4.1. CI 

We use these lemmas to show that the representation (4.6) holds in the large. 
All solutions of (4.7), (4.8) are classified as discontinuities in some field k = 1,2,3. 
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THEOREM 4 .4 :  Any solution vl, t~, s, of  (4.7), (4.8) can be continuously de- 
fo, med, sati~. , ing (4.7), (4.8), to a ' , i r i s '  , o l . t i on  ~1 = ~ = ~ e D.  a l  = 

O, i = ~k (z). The va/ue o / k  depends only on the given states vl, v2. 

Proof: If the given value of ul  or of s is zero, or if ul  = s, then discontinuity is a 

contact discontinuity, k = 2, and there is nothing to prove. Otherwise, as vl, va 

are deformed, s can never become equal to sero or to Ul, from Lemma 4.2. 

At each stage we specify vi and solve (4.7), (4.8) for s, 22. We reduce full 

to zero monotonically; Pl can be taken fixed; and el is either fixed or increases 

boundedly, as explained below. 

Writing (4.7), (4.8) as a system T(z2, s, Vl) = 0, we readily find 

OT(z2, s, ~1) 
(4.19) det a(z2, s) = s2t° l -  + Pz(z2) " (UlWX+ + q l - )  

which does not  vanish for ul  ~ 0, s ~ 0, zl ,  z2 E D, so the deformation can 

be continued at each stage. 

Next we show that  I~1, I~1 are bounded as I",l decreases and el at most 

increases boundedly. From (4.7), (4.8), we have ]8(22 -w~+)l and IP2 + 8t01-I 

bounded uniformly. 

If is I --~ 0 and Iz21 ~ oo at some nonzero value of Ul, both components of the 

right side of (4.7) are not zero, so both  components of 22 must increase without 

bound. From (4.3), this implies P2 ---' co, giving a contradiction with (4.8). 

Next suppose that  Is[ --* 0 and Iz2I--~ oo as ul  --* 0. From (4.7) we have 

(4.20) I,I = 0(I ,~ l / Iz21) ,  

and from (4.8), P2 remains bounded. Again, appealing to (4.3), there exists 

~ R ~, possibly depending o]1 Ul, such that  each component of ~ is nonnegative, 

I~1 and ~ "z2 are uniformly bounded, and ~. (22 - t0x+) = 1. Taking the inner 

product  of (4.7) with ~, the left side is - s  but  the right side 0(l~l), giving a 

contradiction with (4.20). 

Finally, suppose that  I z2 -  wx+ I ~ 0 and !~l-~ oo. Fro~,~ (4.8), this could only 

happen as lull--, 0. Then in (4.7), wl+ = zx ÷ 0 ( u  2) so 

(4.21) Izl - :~t  = o (,,~ + I~,, I l i~ l ) .  

Then using (4.21), the right side of (4.8) is 0 (" I  + I~  - z~  I) --  0 (" I  + I"~ I/1~1), 
whereas the left side is at least 0 (1 '~1)  so b'i is bounded. 

Next we show that  8, not zero initially, is uniformly bounded away from zero, 

in particular tha t  s does not approach zero as ut  does. Suppose otherwise, then 
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in the limit we have s = ul = 0, lul = ql+ = P2, so the two limits states are 

connected by a contact discontinuity. This is impossible, from Lemma 4.2, unless 

the two states obtained in the limit coincide, i.e. Is1 - z2[ --* 0 in addition as 

Ul --* 0. But for v2 in a small neighborhood of vl, given strict hyperbolicity, the 

representation (4.6) is valid [1], and s cannot be close to zero unless 8 = 0 and 

vl, v2 are connected by a contact discontinuity, which was precluded by Lemma 

4.2. 

Now as our deformation proceeds, since ul ,  8 were not originally zero it follows 

from Lemma 4.3 that  P2 cannot become zero. The same argument used to prove 

Lemma 4.3 shows that  for the system (2.12a), (2.12e), e2 also cannot become 

zero. For the other systems, however, e2 or e2 + P2 might become zero at some 

point. However, in each case (2.12b), (2.12c), (2.12f) this can be avoided by 

a bounded increase of el as [ul[ is reduced, given the uniform boundedness of 

I l, 1 21 and the uniform boundedne  of away zero. For each of the three 
systems, it sufllces to write out (4.7), (4.8) and make elementary estimates. We 

omit these details. 

Thus as ul  --* 0, Is1 - z2[ --* 0, so for [ul [ sufllciently small the local represen- 

tation (4.6) holds, the F~(~I) are distinct, and the value of k follows from strict 

hyperbolicity. By continuity, the integer k is independent of the deformation, 

and depends only on Vl, ~2. [] 

In the large, we identify u as the set of points associated 
with the value k in Theorem 4.4. Each of the r~ (v l )  includes the continuation 

of the respective set in a neighborhood of vl. 

It is possible that  r+ (v l )  and I'~'(vl) coincide. Because of the possible need 

to raise el in the proof of Theorem 4.4, it is also possible that  I'k(vl) -'- r + (vl) u 
r~- (vl) u (vl } contains disjoint segments for the systems (2.12]>), (2.12c), (2.12f). 

If so, because of the boundedness of z2 in proving Theorem 4.4, each disjoint 

segment of Fk(vl) must have (at least) one endpoint v2 with z2 E aD,  i.e. 

there must be at least two points v2 E Fk(vl), z2 E aD.  A simple condition 

precluding this is the following. 

LEMMA 4.5:  In addition to (4.2), (4.3), assume the given equation o / s t a t e  

P = P(p,e) is such that P = 0 / t ' and  only/t 'e  = 0. Then forzl  E D, the Fk(vl) 

are all connected. 

Proof: For k = 2, or for systems (2.12a), (2.12e), this is already established. 

For the other systems, we solve (4.7), (4.8) for ul ,  s, P2 with I>2 -- e2 --- 0, i.e. 

z2 E aD.  For (2.12c), the only solutions correspond to ul = 8, o r  s -= 0, 
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i.e. contact discontinuities. For (2.12b), (2.12f), there are two such solutions 

which do not correspond to contact discontinuities, obtained from each other 

by the transformation P2 -4 p2, ul --* -ul, s -4 -s. This is the reflection 

transformation (2.2), under which A~(vl) --, A4-k(--ul ,zl)  and so k ---, 4 - k in 

Theorem 4.4. Thus one of the solutions v2,z2 E aD corresponds to k = 1 and 

one to k = 3 in Theorem 4.4; for fixed k, k # 2,r/c(Vl) therefore contains at 

most one point v2 with z2 E aD,  and our result follows. [] 

LEMMA 4.6 :  For vl t~xed, zl E D, assume rk(vl)  is connected, and that for 

some ~ E r ~ ( ~ ) ,  s ( ~ , , ~ )  = ~ i ( ~ ) .  Then j = k. 

Remark: When genuine nonlinearity does not hold, this is a central condition 

in the study of the solvability of Riemann problems, for example. This question 

has been discussed extensively by T. P. Lin [3,4]. 

Proof: For k = 2, this is obvious from Lemma 4.1. For k : 1 or 3, 1~k(I)1) 
connected, s(vl, v2) is close to Al,(vl) = ttl d-c(zl) for v2 near vl. By continuity, 

using Lemma 4.2, along r~(v l ) ,  S(Vl,V2) can never become equal to u2, by 

Lemma 4.2, so by strict hyperbohcity, if s(vl, v~.} becomes equal to Aj(v2), ] 

must be k. [] 

The main result of this section is the following. 

THEOREM 4.7:  Suppose that for a / / z  E D, k = 1, 3, rh(v) is connected 

and 6eld k is locally genuinely non//near [1], i.e. 

(4.22) ~ ( ~ )  . v ~ ( ~ )  > o, 

with rk, $k as given in (8.6); then each of the following holds: 

(4.23) Field k is genuinely nonlinear in the large [6], i.e. for all 

v2 ~ rk(vl ) ,  v2 # v,, s(vl,  v2) # ~¢(v2) for a~y j. 

(4.24) rk(vl )  continues in both directions as a smooth 1-manifold, to inanity or 

to a D ; . ,  P, an~ s(. , .1) are ~ s tr ic t ly  monotone o .  rk(~d. 

(4.25) Let U = U(z), F = t~U be an entropy function/aux pair, with U strictly 
convex in z (convex, not ne~=essarily strictly so, in w). 

Then for v~ ~ rk(vl )  the entropy conditions, 

(4.26) )tk(I]l) <: 8(t$1, t;2) <: ~k(tt2), 
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(4.27) --8(I]1,02)(U(Z2) -- U(Z1)) -l- ~U(Z2) -- tllU(Zl) ~> O, 

( 4 . 2 8 )  u2  > ul,  

are equ/vaIent. 

(4.29) For 02 E r~ (vl) sat is~ing the entropy condition, the vectors wu (v2)rj (v2), 

3" < ]¢; t0(O2) --  tO(~l l  ; t0,~ (ollrrr~(t)11,  ~'~ > ]C a r e  ~ e a r ~ y  independent. 

Remarks: From (4.23), a similarity solution of a given Riemann problem, satis- 

fying the entropy condition, will consist of a single 1-wave (either a rarefaction 

wave or a shock), a contact discontinuity, and a single 3-wave. From (4.24), 

u, P are monotone along the curve of admissible 1-, 3-waves through any given 

point. Thus from Lemma 4.1, an elementary phase plane analysis in the u, P 

plane shows that the similarity solution of a given Riemann problem, satisfying 

the entropy condition, is unique in the large (assuming it exists, of. [9]). 
The result (4.29) is a statement of the stability of entropy shocks with regard 

to perturbations on the incoming characteristics. Some recent results to this 

effect [5, 7] depend critically on this assumption. 

Proo[: Fix vl, with zl E D. For definiteness, we take the case k = 3, and 

consider the branch r3+(vz) along which ~3 and s(vz, "1 are increasing initially 

as one moves away from vl. Initially, b is parallel to r3 given by (3.6), so ~ > O, 

and from strict hyperbolicity, using (3.9), ]b > 0 as well. 

Therefore if (4.23) or (4.24) is to fail, ~ and/or  ~ and/or  P must become zero 

at some point 02 E ra+(Vl), i.e. satisfying (4.7), (4.8) and (4.9), (4.10). Let 
02 = (0,z2) be the first such point in ra+(Vl). Since u and s were increasing 

along r3 + between vl and 02, we have 

(4.301 ul < 0  and s > O .  

From (4.9), 6 and ~ cannot vanish simultaneously, for then i = O, 6 = 0 which 

is not permitted by a normalisation condition. 

From (4.10), using (4.30), /5(02) = 0 requires /~(02) and ~(02) nonpositive, 

which is impossible. Next suppose t'~(02) = 0 with 5(02) > 0, P(02) > 0. Using 

(4.9) and (4.7) we find 

P(02)  = 

( 4 . 3 1 )  = - ~ (02 )  Pz(z2)" (z2 - w 1 + )  
S 

= + q- 
8" 
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From (4.30), both components of u l t o+ (v l )+  q-(v l )  are negative, while those 
of Pz are nonnegative, at least one positive. Therefore the right side of (4.31) is 

negative, contradicting P(VS) > 0. 
The remaining possibility is ~(vs) = 0, with fi(vs) > 0. Since ~(vs) 

0, s(vl ,vs)  has to be one of the characteristic speeds at vs. By Lemma 4.6, 
8(Vl, vs) = ~3(vs), so ~)(vs) is either parallel or antiparallel to rs(vs). Because 

~(VS) > 0, ~(VS) and r3(vs) are parallel, and so ~3(vs) > 0 from (4.22), i.e. 
~3 - S(Ul, ") is increasing in a neighborhood of u2. This is impossible, as from 

(4.22))~3 - s(ul, .) is positive on I '+(vt) between vl and vs, becoming equal to 

zero at vs. 
Thus (4.23) and (4.24) hold, ~s - s( ' ,~l)  is positive on all of F~(vl)  and 

s(. ,vl) > ~3(vl). Thus the entropy condition (4.26) is satisfied for all vs E 
F+(vl)  but is violated for vs E F~(vl) .  The equivalence of the condition (4.28) 
follows from (4.30). 

For systems which are genuinely nonlinear in the large, the entropy inequality 
(4.27) is equivalent to the classical entropy condition (4.26), provided U is strictly 
convex in to. For U convex in to, strictly convex in z, the only way (4.27) could 

fail to be equivalent to (4.16) is if z2 = zl for some v2 E I~+(vI), cf. [8], eqs. 

(2.4), (2.5). This is precluded by the monotone increase of P on l~+(Ul). 

It remains to prove (4.29). The cases k = 1, 3 are entirely similar, so again 

we discuss the case k = 3. For vs E 1~(vl) ,  satisfying (4.7) - (4.10), we wish 

to show that  to~rl(t~), tour2(vs), and to(v1) - to(vs) are linearly independent. 
Using (2.11), (3.3), (3.6) and us = 0, an elementary calculation shows that  linear 
independence will fail if and only if 

(4.32) W -- \ c(z2) / " (to(vl) - to(vs)) = 0. 

From (4.9), (4.10) 

+ - 

(4.33) s(to(vs) - to(vl)) = P(z2) - sto-,,(O, z2)~2 ) ; 

given genuine nonlinearity, we have already shown that  ~, u2, P are nonzero, 

indeed that  they are all positive. Using (4.33) in (4.32), we readily find, using 
(3 .9) ,  

(4 .34)  V¢" = (1 - c(z2))(i~(z2) + to-u(0, z2)c(z2)t~2), 
8 

which is negative, as we proved s -- S(Vl, vs) < ~s(vs) = u~÷c(z2) = c(z~) above, 

in the proof of genuine nonlinearity in the large. Thus the proof is complete. [] 
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We note that for /c = 2, v2 E r2(ul), i.e. vl, v2 connected by a contact 

discontinuity, the vectors w~r1(~1), w(~) - w(~1), and w, r3(~2) are linearly 

independent, irrespective of genuine nonlinearity or an entropy condition. The 

elementary computation, which we omit, depends only on ul = u2, P1 -- P2, and 

Pl/¢1 ~ P2/~2, as obtained, for example, from (4.2). 
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